エクステンディド・アブストラクト

走査型透過X線顕微鏡(STXM)による 高分子材料の局所構造解析

 菊間 淳,^{1,*} 風間 美里,¹ 梅本 大樹,¹ 武市 泰男²
¹ 旭化成株式会社 基盤技術研究所 〒416-8501 静岡県富士市鮫島2-1
² 高エネルギー加速器研究機構
〒 305-0801 茨城県つくば市大穂1-1
^{*}kikuma.jb@om.asahi-kasei.co.jp

(2018年3月22日受理; 2018年5月3日掲載決定)

Application of Scanning Transmission X-ray Microscope on Polymer Materials

Jun Kikuma,^{1,*} Misato Kazama,¹ Hiroki Umemoto¹, and Yasuo Takeichi²

¹ Analysis and Simulation Center, Asahi-KASEI Corpotation, Fuji, Shizuoka, 416-8501 Japan ²Photon Factory, KEK, Tsukuba, Ibaragi, 305-0801 Japan ^{*} kikuma.jb@om.asahi-kasei.co.jp

(Received: March 22, 2018; Accepted: May 3, 2018)

1. はじめに

高分子ブレンドや無機/高分子複合材料における 各成分のドメイン構造,分散状態,界面構造などの 局所構造情報は,成型体の諸物性を左右する重要な 因子である.これら局所構造の直接観察手法として, 電子顕微鏡およびそれに付随する分析機能を用いた 種々の解析が広く用いられているが,その一方で, X線をプローブとする顕微鏡が近年注目され始めて いる.

本講演では、走査型透過 X 線顕微鏡 (Scanning Transmission X-ray Microscopy: STXM)の原理とそれ を用いた局所化学状態解析の事例について紹介する. STXM は通常、放射光を光源とする微小 X 線ビーム により、試料上を空間的にスキャンするとともに、 X 線の波長 (photon energy) をスキャンすることに より、X 線吸収スペクトルのマッピングを得る手法 である. 高分子材料の解析においては、高分子を構 成する元素 (C, N, O など)の吸収端近傍での測定 を行うため、軟 X 線放射光が用いられる. 電子顕微

鏡に比べると空間分解能は劣るものの,スペクトル 情報から化学状態を識別する能力が高い,という大 きなメリットがある.

2. STXM 測定の実際と特徴

STXMは、集光したX線ビームを切片状の試料上 で走査しながら透過光強度を検出する手法である. 多くの場合、集光にはゾーンプレートが用いられ る.

Fig. 1 に装置の概念図を示す. X 線の photon

Copyright (c) 2018 by The Surface Analysis Society of Japan

Fig. 2. イメージスタック測定の概念図

(a) 各 photon energy における一連のマッピングデータの 取得

(b) 特定部位 (region of interest) からのスペクトル抽出

energy を固定して空間的にスキャンを行えば,そ の photon energy における X 線透過像(もしくは吸 収係数のマッピング)を得ることができる. Photon energy を少しずつ変えながら吸収係数マッピング を次々に測定することにより,一連のイメージデー タのセット(イメージスタック)が得られる(Fig. 2 (a)).このデータセットから任意の領域での吸収 スペクトルを抽出することによって,局所における 化学状態の情報を引き出すことができる(Fig. 2 (b)).X線の photon energy 範囲は着目する元素に よって選択する.高分子などの有機材料の場合,多 くは C の K 殻吸収端領域の photon energy (280~ 320eV 程度)での測定が行われる.高分子の構成元 素に応じて O や N の K 殻吸収端のエネルギー領域 を用いる場合もある.

STXMでは、各ピクセルが持っている吸収スペクトルから、化学状態の変化に伴う様々な情報を引き 出すことができることが特徴である.これにより、 成分別のマッピングはもちろん、プロセスにおける 種々の処理や劣化による局所的な化学状態の変化を、 スペクトルのわずかな変化から考察することが可能 である.また、着目するエネルギー領域での吸収が なければ、必ずしも真空である必要はなく、湿潤状 態の試料をそのまま測定するなどの試みも行われて いる.さらに、放射光の偏光を利用した配向解析の 事例も多く報告されている.

3. 高分子ブレンドの解析

高分子ブレンド成型体の断面における各成分の分 布解析を行った例を示す.試料は、ポリオレフィン /N 含有ポリマー/エラストマー の3元系ブレン ドポリマーである.クライオミクロトームを用いて 厚さ約 100nm の切片を作製し,TEM 用グリッド上 に保持したものをSTXM測定に供した.STXM装置 は、高エネルギー加速器研究機構の Photon Factory BL13A に設置された compact-STXM を用い [1],C のK殻吸収端においてイメージスタック測定を行っ た.この時、入射光強度(I0)を同時にモニターす るために、測定範囲の一部にサンプルが存在しない 部位を含めた.Photon energy は、280~310eV の範 囲で変化させ、イメージスタックデータを得た.

得られたイメージスタックデータの特徴的な領域 からスペクトルを抽出し、それらを基準スペクトル とした特異値分解により、成分別マッピングを得た.

Fig.3 に成分別マッピングの結果を示す. [ポリ オレフィン (PO) +エラストマー] の相 (A 相とす る) と, [N 含有ポリマー] の相 (B 相とする) に大 きく分かれており, A 相はさらに PO とエラストマ ーの微小ドメインに分離していることがわかる. A 相と B 相の界面にはエラストマーの薄い層が形成さ れている. このことは, エラストマーが, PO と N 含有ポリマーとの間をつなぐための改質剤として, 混合・分散を促進する役割を担っていることを示唆 している.

エラストマーの種類を変えて同様の実験を行った ところ、各成分の分散状態に変化が見られ、さらに 各領域から抽出した基準スペクトルの形状にも変化 が見られた.この基準スペクトルの変化は、各成分 が完全に相分離しているのではなく、互いに相溶し ていることを示唆しており、スペクトルを詳細解析 することによって、相溶している相内の各成分の組 成情報(定量値)が得られることが期待される.

Fig. 3.3 次元ポリマーブレンドの分布解析結果

4. まとめ、今後の課題

走査型透過 X 線顕微鏡 (STXM)を用いてポリマ ーブレンドにおける各成分の分布状態の解析を行っ た.STXM は電子顕微鏡に比べて,X 線吸収スペク トルに基づく化学状態の情報を豊富に有することか ら,単なる成分別の分布解析のみならず,種々の処 理によるわずかな化学状態や相溶状態の変化を検出 できる可能性を持った手法といえる.また,真空を 必須としないことから,湿潤状態に置かれた高分子 をそのまま観察することも可能であることから,今 後,生体適合性材料などさまざまな分野への応用が 期待される.

5. 参考文献

 Y. Takeichi, N. Inami, H. Suga, C. Miyamoto, T. Ueno, K. Mase, Y. Takahashi, and K. Ono, *Rev. Sci. Instrum.*, 87, 13704 (2016) .